ESP DIPLOMA PHYSICS AND DYNAMICS OF THE OCEAN Academic Year 2021/2022

Part I:

Descriptive Oceanography and Instrumentation (12 lessons)

Miro Gacic (mgacic@inogs.it)

Descriptive Oceanography

- 1. Introduction physical oceanography definition and aims.
- 2. World ocean geography.

Bathymetry, bottom shapes, and patterns

Coastal features and orography

Communications between different oceans and their interactions

3. Temporal and spatial variability of motion in the ocean.

Temporal scales, lifetime of circulation patterns

Spatial scales (basinwide circulation, gyres, mesoscale eddies and rings, meanders)

4. State variables in the ocean.

Temperature and salinity, definitions; geographic distribution (spatial and temporal characteristics), potential temperature

Density; measurements and calculations, spatial and temporal variability.

5. The oceanic heat budget

Heat budget terms

Direct and indirect estimates of heat fluxes

Geographic distribution of terms

Meridional heat transport.

6. The freshwater budget

Freshwater sources and sinks for the world ocean

Geographic distribution of terms

Estuarine and anti-estuarine circulation.

7. Geostrophic currents

Geostrophic approximation

Hydrostatic equilibrium

Thermal wind relation

Barotropic and baroclinic flows

Interior flow and boundary layers

Limitations of the geostrophic approximation.

Satellite sea level observations and estimation of the surface geostrophic flow

Calculations of the vertical geostrophic shear.

8. Wind influence and bottom friction

Ekman layer and Ekman balance

Ekman mass transport

Inertial oscillations

Bottom boundary layer.

9. Vorticity in the ocean

Definition of vorticity

Conservation of vorticity

Vorticity and friction

Ekman pumping

Ekman pumping and wind-driven circulation of the ocean

10. World ocean circulation and global processes

Global conveyor belt, thermohaline circulation

Vertical convection and dense water formation - engine of the global conveyor belt

Western intensification

Eddies, gyres and rings

Coastal and open ocean upwelling and its importance.

11. Climate Change - natural and human-induced causes

Greenhouse gases and impact on climate

Causes of melting ice glaciers and the sea-level increase

Relative contributions of global warming and ice melting to the long-term sea-level increase

Instrumental and proxies' records of long-term changes

Global warming and freshwater budget

Effects on the large-scale oceanic circulation.

12. Non-tidal sea-level variations

Seiches, tsunamis and meteotsunamis

Seasonal, interannual and decadal variability, thermal expansion, and circulation variations

Long-term trend - relation to climatic change

Flooding of the low-lying coastal areas; causes, effects and mitigation Venice example.

Oceanographic Instrumentation

13.Introduction

Classical methods (Research vessels, XBT, CTD, Rosette, current meters, tide gauges, etc.).

14. Autonomous systems

Moored buoys

Surface drifters

Sub-surface floats and profilers

Gliders and AUVs.

15. Remote sensing

ADCP

Acoustic tomography

HF coastal radar.

16. Remote sensing from satellites

Sea surface temperature & ocean colour

Altimetry

Scatterometry

SAR.

Part II: Theory of Large Scale Ocean Circulation (10 lessons)

Riccardo Farneti (rfarneti@ictp.it)

- 1. Fundamentals: Geostrophy, Thermal Wind and Hydrostasy
- 2. **Ekman Dynamics**: the introduction to Friction
- 3. Ocean Waves: Kelvin, Poincarè and Rossby Waves
- 4. Wind-Driven Gyres I: Sverdrup Flow
- 5. Wind-Driven Gyres II: Stommel Model
- 6. Wind-Driven Gyres III: Munk Model
- 7. Wind-Driven Gyres IV: Topographic Effects
- 8. Thermocline Dynamics
- 9. Buoyancy-driven Meridional Overturning Circulation
- 10.Wind-driven Meridional Overturning Circulation
- 11. The Southern Ocean

Part III:

Ocean Variability: processes and impacts (8 lessons)

Alessandro Crise (acrise52@gmail.com)

1. Ocean Variability

Trends and variabilities Unforced vs. forced variability Modes of variability

2. The global Carbon cycle and the physical forcing

The solubility pump

The physical pump and biological pump

The eddies and the Carbon pumps

3. Seasonal Variability of the oceans

Mixed layer dynamics

4. Interannual Variability of the oceans

El Niño and La Niña Indian Ocean Dipole

5. Decadal Variability 21

Atlantic Multidecadal Oscillation

Pacific Decadal Oscillation (PDO) and Pacific Interdecadal Oscillation (IPO)

Suggested readings

General Books

- Benoit Cushman Roisin (1994). Introduction to Geophysical Fluid Dynamics, 320 pp., Prentice Hall, Englewood Cliffs, New Jersey 07632.
- Robert H. Stewart (2000). Introduction to Physical Oceanography, Dept. Of Oceanography, Texas A&M University, 343 pp.
- Matthias Tomczak (2002). An Introduction to Physical Oceanography, Flinders University of South Australia in Adelaide, 13 lectures. (http://www.mt-oceanography.info/IntroOc/newstart.html)
- W. J. Emery & R. E. Thomson, Data Analysis Methods in Physical Oceanography, Elsevier
- Williams, R. G. and Follows, M. J. (2017). Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms, Cambridge University Press, ISBN 978-0-521-84369-0
- Vallis, G. K. (2017). Atmospheric and oceanic fluid dynamics. Cambridge University Press.
- Olbers, D., J. Willebrand, and C. Eden (2012). Ocean Dynamics, Springer-Verlag, 704 pp.
- Talley, L., G. L. Pickard, W. J. Emery, and J. H. Swift (2011). Descriptive Physical Oceanography, Academic Press, 560 pp.

Specialist references

- Underwater gliders for ocean research

- http://pordlabs.ucsd.edu/rdavis/publications/MTS_Glider.pdf

- Marshall et al., Review. North Atlantic Climate Variability: Phenomena, Impacts And Mechanisms. Int. J. Climatol. 21: 1863–1898 (2001) DOI: 10.1002/joc.693
- Sheinbaum, J. (2003). Current theories on El Nino-southern oscillation: a review. Geofisica internacional, 42(3), 291–305.
- Mantua, N. J., Hare, S. (2002). Pacific-Decadal Oscillation (PDO). Encyclopedia of global environmental change, 1, 592-594.
- Han, W., Vialard, J., McPhaden, M. J., Lee, T., Masumoto, Y., Feng, M., De Ruijter, W. P. (2014). Indian Ocean decadal variability: A review. Bulletin of the American Meteorological Society, 95(11), 1679–1703.

_